Determine The General Form, C (-3,-2) Radius = 4, C (1,-2) Radius = 5/2 ? , -Step By Step Po, Please, Salamat Po
Determine the general form
c (-3,-2) radius = 4
c (1,-2) radius = 5/2 ?
-step by step po, please, salamat po
Answer:
General Form:
1) x² + y² + 6x + 4y - 3 = 0
2) 4x² + 4y - 8x + 16y - 5 = 0
Step-by-step explanation:
The general form of equation of the circle is in expanded form:
x² + y² + Cx + Dy + F = 0
Where:
C, D, Y are constant
1)
Center (h,k): (-3,-2)
Radius: = 4
Write in Standard Form ⇒ (x - h)² + (y - k)² = r²:
(x - (-3))² + (y - (-2)² = (4)²
(x+3)² + (y+2)² = 16
Expand for the general form x² + y² + Cx + Dy + F = 0:
(x+3)² + (y+2)² = 16
(x+3)(x+3) + (y+2)(y+2) - 16 = 0
x² + 6x + 9 + y² + 4y + 4 - 16 = 0
x² + y² + 6x + 4y + 9 + 4 - 16 = 0
x² + y² + 6x + 4y - 3 = 0 ⇒ General Form
2)
Center (h,k): (1, -2)
Radius = 5/2
Write in standard form (x - h)² + (y - k)² = r²:
(x - 1)² + (y - (-2))² = (5/2)²
(x - 1)² + (y + 2)² = 25/4
Expand for the general form x² + y² + Cx + Dy + F = 0:
(x - 1)² + (y + 2)² = 25/4
(x-1)(x-1) + (y+2)(y+2) -25/4 = 0
x² - 2x + 1 + y² +4y + 4 - 25/4 = 0
Multiply each term by the least common denominator (LCD) 4:
(4) x² - 2x + 1 + y² +4y + 4 - 25/4 = 0 (4)
4x² - 8x + 4 + 4y² + 16y + 16 - 25 = 0
4x² + 4y² - 8x + 16y + 4 + 16 - 25 = 0
4x² + 4y - 8x + 16y - 5 = 0 ⇒ General Form
Comments
Post a Comment